CSSE220 Genetic Algorithm

Cai Yuchen and Logan Manthey

Introductions and Basic Idea

- Cai Yuchen
- Logan Manthey
- Basic Idea of Project
 - Initial Population
 - Fitness Function
 - Selection
 - Crossover
 - Mutation

UML Overview

UML Overview

Initial Population/Generation

In Biology Chromosomes carry genetic information to be passed down to offspring

UML Overview

Chromosome Viewer in Program

mornos	omev	lewer					—		
ult File									
U	1	2	3	4	5	б	1	8	у
10	11	12	13	14	15	16	17	18	19
20	21	-22	23	-24	25	26	-27	28	29
30	31	-32	33	34	35	36	-37	38	39
4U	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
бО	61	62	63	<u></u> б4	65	មម	67	68	69
70	71	72	73	74	75	76	-77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	Уб	97	98	99

🍰 Chr	omos	omeVi	iewer					_			\times
Default	File										
	U	1	2	3	4	5	б	7	8	ч	
	10	11	12	13	14	15	16	17	18	19	
	20	21	22	23	24	25	26	27	28	29	
	30	31	32	33	34	35	36	37	38	39	
	4U	41	42	4'3	44	45	46	4/	48	49	
	50	51	52	53	54	55	56	57	58	59	
	60	61	62	63	64	65	66	67	68	69	
	70	71	12	73	/4	75	76	11	78	79	
	ຮບ	81	82	83	84	85	86	87	88	88	
	УU	91	92	93	94	95	ЯЮ	¥/	98	ษษ	
	Autoto		1.00	d	6-	wo.	MP	1			
IN	nutate		Loa	u	58	ive		ate: _		,	

Mutation

- These offspring from before can become mutated based on a probability defined in the parameters of the evolution viewer.
- This mutating flips bits in the chromosome
- This creates a diverse population and delays the convergence (the end condition)

Fitness and Selection

• Fitness

- How fit each induvial is
- Fitness Functions assign fitness score to each induvial

Selection

- This is where the fittest individuals are selected and allowed to pass their genes to the next generation
- Individuals with high fitness have more change to be selected for reproduction.

For example, one could assign a fitness score based on the number of consecutive ones. This process of assigning a value for this fitness is a fitness function

0

0 0 **1 1 1 1 1**

Fitness Functions

- Number of Ones
- Number of Max Consecutive Ones
- Alternating Adjacent Values
- Target Chromosome

Object Oriented Design Principles

By being able to apply various fitness functions to the chromosomes these chromosomes can then tell their fitness which then allows the selection to take place (Design Principal 2b)

Alternating Adjacent Values Fitness Function

 This function looks at each one spots and then the next one to it and sees if they are alternating. If that is the case the fitness score is increased.

Alternating Adjacent Values Fitness Function

Demo

generation 201

Generation 9

Generation 200

After running for 500 Generations this pattern becomes very apparent

Target Chromosome Fitness Example

U	1	2	3	4	5	б	1	8	Ч
10		12	13	14	15	16	17	18	19
20	21	-22	-23	24	25	26	-27	28	29
30	31	32	33	34	35	36	-37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	бб	б/	68	69
70	71	72	73	74	75	7б	11	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	Уб	97	98	99

🛃 Open

Look In:

GARP TEXT

Example Smile.txt

a 🔂 🗖 🔡 🗄

Ŧ

One can see these Generations are converging to a point. This convergence is the end condition of the simulator

Scientific Paper Replication

Scientific Paper Replication

Any Questions?

• This is a point that shows how the parents of the individual will pass their genes to the off springs. This point is to be chosen at random

• This is a point that shows how the parents of the individual will pass their genes to the off springs. This point is to be chosen at random

• This is a point that shows how the parents of the individual will pass their genes to the off springs. This point is to be chosen at random

• This is a point that shows how the parents of the individual will pass their genes to the off springs. This point is to be chosen at random

