CSSE220 Genetic Algorithm

Cai Yuchen and Logan Manthey

Start

v

Create
Initial

Introductions and Basic Idea

e Cai Yuchen

e g Main Loop mmm g Selection

* Logan Manthey

* Basic Idea of Project Mutation
* Initial Population
Fitness Function
Selection
Crossover
Mutation

Compute
Fitness

1)

Yes

UML Overview @

@ viewer

@ initialize()
@ generateNewGenerations()

O frame : JFrame

©Chmmosomewewer

O frame : JFrame

© Generation

O mutationRate:float

@ deleteChromosome()

@ crossover(chromosome,chromosome)

|

@ component

@ ChromosomeComponent

@ paintComponent()

@ paintComponent()

@ getFitness()

@ update()
@ click()

©goaIChromosome

@ mutatingChromosome

@ flipCells()
@ mutation()

@ UpdateGraphValues(BestFitness : double, AverageFitness : double , LowFitness: double)

@ selection . .
-] testFitnes[;{goal(lhmmosume,chromosnme} S EELL AL
@ loadGoalChromosome()
@ saveChromosome()
@chromosome © R ©Chromeosome{3raph
O row\Width:int O cells-in(]
O length:int O ColVidth:int O SiZE."-iﬂT.
O cells:int]] i

@ update()

@ click()

U I\/I I_ Ove rVi ew © main @ viewer ©cnmmosomeviewer

@ initialize() O frame : JFrame O frame : JFrame
@ generateNewGenerations()

*

/ © Generation
Y

tationRate:float
mutationrate-tioa @ component @ChromosomeComponent
@ deleteChromosome()

@ crossover({chromosome,chromosome)

@ selection()

@ testFitness(goalChromosome, chromosome)
loadGoalChromosome()

@ aveChromosome()

@ paintComponent() @ paintComponent()
@ repaint() @ repaint()

@chromosome © RS ©Chromeosome{3raph
O rowWidth:int O cells:int]]

O Iengﬂ]:int O Colwidth:int O siz E'-int

e @ UpdateGraphValues(BestFitness : double, AverageFitness - double , LowFitness: double) ® update()

@ gEtF“ﬂESS[} o] Updﬂte{} @ Cli{:k(::l
@ click() —_———

@ mutatingChromosome

© goalC hromosomel
|
1

@ flipCells()
@ mutation()

In Biology Chromosomes

carry genetic information to

Initial Population/Generation be passed down to offspring

This is a gene

Al 0 0 0 o (| o) o 0 0

\/ This is a

] Chromosome

|

This group of genes and
chromosomes is a population

UML Overview

© main)
viewer

©Chr0mﬂsome‘#iewer

@ initialize() O frame : JFrame O frame : JFrame

@ generateNewGenerations()

© Generation
Y

O mutationRate:float
mutationrate-tioa @ component @ChromosomeComponent
@ deleteChromosome()
o crusscluver{chromnsume:chromusume} ® paintComponent() @ paintComponent()
© selection() @ repaint() © repaint()

@ testFitness(goalChromosome, chromosome)

@ loadGoalChromosome()
@ saveChromosome()

© graph
@chromosome

O rowWidth:int

O lengthint
O cells:int[]

O Colvidth:int

©Chromeosome{3raph

@ UpdateGraphValues(BestFitness : double, AverageFitness - double , LowFitness: double)

@ getFitness()

@ ypdate()
@ click()

@ mutatingChromosome

©goal€hromosome

@ flipCells()
@ mutation()

O cells:int]]
O sizeint

@ update()
@ click()

Chromosome Viewer in Program

B ChromosomeViewer = |

Default File

Default File

s A

f1 fa 310 7 y : i 74

gl | dd || B4 84 45 | BEH || Bf 88 N8BT | B2 B3| B4| €5 ©B|| 87| ©8

Mutate Load Save M Rate: _/N

Mutate Load Save M Rate: [N (10

Mutation

* These offspring from before can become mutated based on a
probability defined in the parameters of the evolution viewer.

* This mutating flips bits in the chromosome

* This creates a diverse population and delays the convergence (the
end condition)

Al 0 1 0 1 1 0 0 0

A2 0 0 1 1 0 0 0 0

Fithess and Selection

* Fithess

* How fit each induvial is
* Fitness Functions assign fitness score to each
induvial

e Selection

A2

* This is where the fittest individuals are selected and
allowed to pass their genes to the next generation

* Individuals with high fitness have more change to be
selected for reproduction.

For example, one could assign a
fitness score based on the number
of consecutive ones. This process of
assigning a value for this fitness is a
fitness function

Fitness Functions

e Number of Ones

* Number of Max Consecutive Ones

* Alternating Adjacent Values
* Target Chromosome

This data is then used later to
compare fitness between the
chromosome and the goal
chromosome

v

@ Generation

O mutationRate:float

@ deleteChromosome()
@ crossover{chromosome,chromosome)

Q _testFiiness(goalChromosome,chromosomel/
@ lpadGoame

@ saveChromosome()

TITOTITORSOTTI, T

V4

@chromosomel

O lengih

cells:int]]

O rowWidth:int
O ColWidth:int

@ getFitness()

© UpdateGraphValues|{BestFitness : dc
@ update()
@ click()

© mutatingChromosome
© goalC hromosomel
|

@ flipCells{)
@ mutation()

Object Oriented Design Principles
By being able to apply various fitness functions to the

chromosomes these chromosomes can then tell their
fitness which then allows the selection to take place

(Design Principal 2b)

Alternating Adjacent Values Fitness Function

* This function looks at each one spots and then the next one to it and
sees if they are alternating. If that is the case the fitness score is

increased.
These adjacent Cells alternate, These adjacent Cells do not
increasing the fitness alternate, so fitness is not increased

A A

Al 0 1 0 1 0 0 1 0

lternating Adjacent Values Fitness Function
emo

Wwledm Rl _Ganoma Long; 1 Finuss Sthoctions Truneiy | BN R | MM anaE TN e ~| Grmgsmar? || Papukton 100 GeeslnE 0

percentage finesss fitness over generations

W e finess

G Hzenming Cestance

1) 0 &0 EU w aa 120 14c plEr] 40
g=n=raban

Govonmm Loag®; 100 | ENtlsm pamies: ipogutalion | Teermimale BesLAIL 101 ot 1 g 1rsd it

N e A D EB R &G D A oG e

Q Evolution Viewer

Mutation Rate: _/Genome Length: |1 Fitness Selections | Truncation v| selection type | Alternating Adjacent Values Fitness w | Crossover? Population: |100 Generations: |200
percentage fitnessi% fithess over generations
100%
Closer Look At Adjustable Parameters in Evolution Viewer

B0% +— — — — — — — — — — — — — — e e e —00%
|

80% + i

0% T Average fitness

B% - W Worst fitness

G0% -~ Hamming Distance

40%

a0% +

20% T

10% +

0% f I I f f f f f f

0 20 40 G0 g0 100 120 140 160 180 200

generation

Genome Length: (100 Elitism number: _/population |0 Terminate Best Fit: (101 learning mode restart

R Chromosome Viewer

generation 201

Generation 9 Generation 200 Generation 500

After running for 500

Generations this pattern
becomes very apparent

Target Chromosome Fitness
Example

Ciefault File

"ﬂﬂlﬂﬂﬂ"lﬂ

T
T
T O O
T e

Mutate Load Save M Rate: /N |10

LookIn: | ~GARP TEXT - ela-

[} Example Smile.txt

2 [Mumber of ones Fitness w~ | Crosso

Mumber of ones Fitness
Mumber of Max Consective Ones Fitness
target chromosome
Alternating Adjacent Values Fitness

File Name: | |

Files of Type |AII Files ‘ - |

| Open H Cancel |

Gen 11 Gen 168 Gen 200

One can see these Generations are converging to a point. This
convergence is the end condition of the simulator

UML Overview

Object Oriented Design Principles
Inheritance was used here for the
types of chromosomes.

(Design Principal 5d)

© main

S

@ viewer

@ initialize()
@ generateNewGenerations()

*

© Generation

O mutationRate:float

@ deleteChromosome()

@ crossover({chromosome,chromosome)

@ selection()

@ testFitness(goalChromosome, chromosome)
@ loadGoalChromosome()

@ saveChromosome()

*

O frame : JFrame

@Chmmﬂsome‘#iewer

O frame : JFrame

Y

@ component

@ paintComponent()
@ repaint()

@ ChromosomeComponent

@ paintComponent()
@ repaint()

@Chrﬂmosome \

©Chromeosome{3raph

O rowWidthNhgt

O lengthint
O cells:int[]

O Colvidth:int

O cells:int]]
O sizeint

@ getFitness()

@ ypdate()
@ click()

@@mhmmosome

N

I @mutatingcmomosome
|

@ flipCells()
@ mutation()

@ UpdateGraphVal\es(BestFitness : double, AverageFitness - double , LowFitness: double)

@ update()
@ click()

Scientific Paper Replication

249 &0
@

Relative Frequency of Allele

o
t

o

©

~

o
o

- = = Incorrect Alleles
------ Correct Aligles
— Undecided Alleles

10

30 40 50
Generations

Relative Frequency of Allele

Scientific Paper

= = = Incorrect Alleles
Correct Aligles
Undecided Alleles

o

Q
©

© ©
~d o

o
o

Qo
9
|

\
\
/

0.0 .+ - e ——
o 10 20 30 40 S0

Generations

Replication

percentage fitness/%

Mutation Rate: _/Genome Length: |0 Fitness Selections | Filness Proportionate ~ selec(lontype|Num:JerUTUﬂeanness

fitness over generations

~ | Crossover? Population: 1000 ‘Generations: 200

100%

90% +— —

B0% +

0% T

B0% o

50%

Best fithess

W ‘Waorst fitness

Hamming Distance

—a0%

40% .

0% - 1e

20% + . 0s

10%

0% : i i : ¥ =
0 100 120 140 160 180 200

generation

Genome Length: (20 Elitism number: _fpopulation |0 Terminate BestFit: |21 learning mode

Any Questions?

Parents

Crossover

* This is a point that shows how the parents of the individual will pass
their genes to the off springs. This point is to be chosen at random

Al

A2

0

0

0

0

0

0

0

0

Parents

Crossover

* This is a point that shows how the parents of the individual will pass
their genes to the off springs. This point is to be chosen at random

Al

A2

0

0

0

0

0

0

0

0

Crossover

* This is a point that shows how the parents of the individual will pass
their genes to the off springs. This point is to be chosen at random

Parents

Offspring
A

A4

Al 0 0 0 0 0 0 0 0
A2 1 1 1 1 1 1 1 1
A3 1 1 1 1 0 0 0 0

Crossover

* This is a point that shows how the parents of the individual will pass
their genes to the off springs. This point is to be chosen at random

Parents

Offspring

|

Al

A2

A3

A4

