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In Biology Chromosomes

carry genetic information to

Initial Population/Generation be passed down to offspring

This is a gene
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This group of genes and
chromosomes is a population



UML Overview
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Chromosome Viewer in Program
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Mutation

* These offspring from before can become mutated based on a
probability defined in the parameters of the evolution viewer.

* This mutating flips bits in the chromosome

* This creates a diverse population and delays the convergence (the
end condition)

Al 0 1 0 1 1 0 0 0

A2 0 0 1 1 0 0 0 0




Fithess and Selection

* Fithess

* How fit each induvial is
* Fitness Functions assign fitness score to each
induvial

e Selection

A2

* This is where the fittest individuals are selected and
allowed to pass their genes to the next generation

* Individuals with high fitness have more change to be
selected for reproduction.

For example, one could assign a
fitness score based on the number
of consecutive ones. This process of
assigning a value for this fitness is a
fitness function




Fitness Functions

e Number of Ones

* Number of Max Consecutive Ones

* Alternating Adjacent Values
* Target Chromosome

This data is then used later to
compare fitness between the
chromosome and the goal
chromosome
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Object Oriented Design Principles
By being able to apply various fitness functions to the

chromosomes these chromosomes can then tell their
fitness which then allows the selection to take place

(Design Principal 2b)




Alternating Adjacent Values Fitness Function

* This function looks at each one spots and then the next one to it and
sees if they are alternating. If that is the case the fitness score is

increased.
These adjacent Cells alternate, These adjacent Cells do not
increasing the fitness alternate, so fitness is not increased
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lternating Adjacent Values Fitness Function
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Q Evolution Viewer
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R Chromosome Viewer

generation 201

Generation 9 Generation 200 Generation 500

After running for 500

Generations this pattern
becomes very apparent




Target Chromosome Fitness
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One can see these Generations are converging to a point. This
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UML Overview

Object Oriented Design Principles
Inheritance was used here for the
types of chromosomes.

(Design Principal 5d)
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Scientific Paper Replication
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Any Questions?



Parents

Crossover

* This is a point that shows how the parents of the individual will pass
their genes to the off springs. This point is to be chosen at random
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Parents

Crossover

* This is a point that shows how the parents of the individual will pass
their genes to the off springs. This point is to be chosen at random
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Crossover

* This is a point that shows how the parents of the individual will pass
their genes to the off springs. This point is to be chosen at random

Parents

Offspring
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Crossover

* This is a point that shows how the parents of the individual will pass
their genes to the off springs. This point is to be chosen at random
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